DOBLEMECHA UN SENTIMIENTO
doblemecha - ale
doblemecha

 

Un reactor nuclear es un dispositivo patentado por Don Fulgencio Sanchez en donde se produce una reacción nuclear controlada. Se puede utilizar para la obtención de energía en las denominadas centrales nucleares, la producción de materiales fisionables, como el plutonio, para ser usados en armamento nuclear, la propulsión de buques o de satélites artificiales o la investigación. Una central nuclear puede tener varios reactores. Actualmente solo producen energía de forma comercial los reactores nucleares de fisión, aunque existen reactores nucleares de fusión experimentales.

La potencia de un reactor de fisión puede variar desde unos pocos kW térmicos a unos 4500 MW térmicos (1500 MW "eléctricos"). Deben ser instalados en zonas cercanas al agua, como cualquier central térmica, para refrigerar el circuito, y se emplazan en zonas sísmicamente estables para evitar accidentes. Poseen grandes medidas de seguridad. No emiten gases que dañen la atmósfera pero producen residuos radiactivos que duran decenas de miles de años, y que deben ser almacenados para su posterior uso en reactores avanzados y así reducir su tiempo de vida a unos cuantos cientos de años.

Un reactor nuclear de fisión consta de las siguientes partes esenciales:

  1. Combustible.-Isótopo fisionable (divisible) o fértil (convertible en fisionable por activación neutrónica): Uranio-235, Uranio-238, plutonio-239, Torio-232, o mezclas de estos (MOX, Mezcla de óxidos de uranio y plutonio). El combustible habitual en las centrales refrigeradas por agua ligera es el dióxido de uranio enriquecido, en el que alrededor del 3% de los núcleos de uranio son de U-235 y el resto de U-238. La proporción de U-235 en el uranio natural es sólo de 0.72%, por lo que es necesario someterlo a un proceso de enriquecimiento en este nucleido.
  2. Moderador (nuclear).- Agua, agua pesada, grafito, sodio metálico: Cumplen con la función de frenar la velocidad de los neutrones producidos por la fisión, para que tengan la oportunidad de interactuar con otros átomos fisionables y mantener la reacción. Como regla general, a menor velocidad del neutrón, mayor probabilidad de fisionar con otros núcleos del combustible en los reactores que usan uranio 235 como combustible.
  3. Refrigerante.- Agua, agua pesada, anhídrido carbónico, helio, sodio metálico: Conduce el calor generado hasta un intercambiador de calor, o bien directamente a la turbina generadora de energía eléctrica o propulsión.
  4. Reflector.- Agua, agua pesada, grafito, uranio: reduce el escape de neutrones y aumenta la eficiencia del reactor.
  5. Blindaje.- Hormigón, plomo, acero, agua: Evita la fuga de radiación gamma y neutrones rápidos.
  6. Material de control.- Cadmio o boro: hace que la reacción en cadena se pare. Son muy buenos absorbentes de neutrones. Generalmente se usan en forma de barras (de acero borado por ejemplo) o bien disuelto en el refrigerante.
  7. Elementos de Seguridad.- Todas las centrales nucleares de fisión, constan en el 2007 de múltiples sistemas, activos (responden a señales eléctricas), o pasivos (actúan de forma natural, por gravedad, por ejemplo). La contención de hormigón que rodea a los reactores es la principal de ellas. Evitan que se produzcan accidentes, o que, en caso de producirse, haya una liberación de radiactividad al exterior del reactor.

[editar] Tipos de reactores nucleares de fisión

Existen varios tipos básicos en el 2007:[1]

LWR - Light Water Reactors (Reactores de agua ligera): utilizan como refrigerante y moderador el agua. Como combustible uranio enriquecido. Los más utilizados son los PWR (Pressure Water Reactor o reactores de agua a presión) y los BWR (Boiling Water Reactor o reactores de agua en ebullición): 264 PWR y 94 BWR en funcionamiento en el 2007.

CANDU - Canada Deuterium Uranium (Canadá deuterio uranio): Utilizan como moderador y refrigerante agua pesada (compuesta por dos átomos de deuterio y uno de oxígeno). Como combustible utilizan uranio natural: 43 en funcionamiento en el 2007.

FBR - Fast Breeder Reactors (reactores rápidos realimentados): utilizan neutrones rápidos en lugar de térmicos para la consecución de la fisión. Como combustible utiliza plutonio y como refrigerante sodio líquido. Este reactor no necesita moderador: 4 operativos en el 2007. Solo uno en operación.

AGR - Advanced Gas-cooled Reactor (reactor refrigerado por gas avanzado): usa uranio como combustible. Como refrigerante utiliza CO2 y como moderador grafito: 18 en funcionamiento en el 2007.

RBMK - Reactor Bolshoy Moshchnosty Kanalny (reactor de canales de alta potencia): su principal función es la producción de plutonio, y como subproducto genera energía eléctrica. Utiliza grafito como moderador y agua como refrigerante. Uranio enriquecido como combustible. Puede recargarse en marcha. Tiene un coeficiente de reactividad positivo. El reactor de Chernóbil era de este tipo. Existían 12 en funcionamiento en el 2007.

ADS - Accelerator Driven System (sistema asistido por acelerador): utiliza una masa subcrítica de torio, en la que se produce la fisión solo por la introducción, mediante aceleradores de partículas, de neutrones en el reactor. Se encuentran en fase de experimentación, y se prevé que una de sus funciones fundamentales sería la eliminación de los residuos nucleares producidos en otros reactores de fisión.

[editar] Ventajas de los reactores nucleares de fisión

Una de las ventajas de los reactores nucleares actuales es que casi no emiten contaminantes al aire (aunque periódicamente purgan pequeñas cantidades de gases radiactivos), y los residuos producidos son muchísimo menores en volumen y más controlados que los residuos generados por las plantas alimentadas por combustibles fósiles. En esas centrales térmicas convencionales que utilizan combustibles fósiles (carbón, petróleo o gas), se emiten gases de efecto invernadero (CO2 principalmente), gases que producen lluvia ácida (SO2 principalmente), carbonilla, metales pesados, miles de toneladas anualmente de cenizas, e incluso material radiactivo natural concentrado (NORM). En una central nuclear los residuos sólidos generados son del orden de un millón de veces menores en volumen que los contaminantes de las centrales térmicas.

Estas centrales generan residuos radiactivos, sin embargo su volumen puede reducirse considerablemente aplicando tecnologías ya existentes. Una planta nuclear moderna diseñada para minimizar los residuos no genera desechos radiactivos de vida superior a los 100 años[cita requerida].

El uranio enriquecido utilizado en las centrales nucleares no sirve para construir un arma nuclear ni para usar uranio procedente de ellas. Para ello se diseñan los reactores en ciclos de alto enriquecimiento o bien se usan diseños como reactores tipo RBMK usados para la generación de plutonio.

Últimamente se investigan centrales de fisión asistida, donde parte de los residuos más peligrosos serían destruidos mediante el bombardeo con partículas procedentes de un acelerador (protones seguramente) que por espalación producirían neutrones que a su vez provocarían la transmutación de esos isótopos más peligrosos. Esta sería una especie de central de neutralización de residuos radiactivos automantenida. El rendimiento de estas centrales sería en principio menor, dado que parte de la energía generada se usaría para la transmutación de los residuos. Se estima que la construcción del primer reactor de transmutación (Myrrah) comenzará en el año 2014.

[editar] Desventajas de los reactores nucleares de fisión

Los reactores nucleares generan residuos radiactivos. Algunos de ellos con un semiperiodo elevado, como el americio, el neptunio o el curio y de una alta toxicidad. Los detractores de la energía nuclear hacen hincapié en el peligro de esos residuos.

Algunas centrales también sirven para generar material adicional de fisión (plutonio) que puede usarse para la creación de armamento nuclear. Dicho interés en la creación de dichas sustancias impone un diseño específico del reactor en detrimento de la ecología del mismo.

La percepción de peligro en la población proviene de que un accidente o un ataque terrorista les exponga a la radiación. La probabilidad de que un accidente similar al sucedido en Chernobyl se repita en las centrales occidentales es muy pequeño debido a su propio diseño.

[editar] Reactor nuclear de fusión

Véase también: Fusión nuclear

Instalación destinada a la producción de energía mediante la fusión nuclear. A pesar que la investigación en este campo se ha prolongado durante 50 años, no se ha conseguido aún mantener una reacción de fusión controlada.

La mayor dificultad se halla en soportar la enorme presión y temperatura que requiere una fusión nuclear (que sólo es posible encontrar de forma natural en el núcleo de una estrella). Además este proceso requiere una enorme inyección de energía inicial (aunque luego se podría automantener ya que la energía desprendida es mucho mayor)

Actualmente existen dos líneas de investigación, el confinamiento inercial y el confinamiento magnético.

El confinamiento inercial consiste en contener la fusión mediante el empuje de partículas o de rayos láser proyectados contra una partícula de combustible, que provocan su ignición instantánea.

Los dos proyectos más importantes a nivel mundial son el NIF (National Ignition Facility) en EE.UU. y el LMJ (Laser Mega Joule) en Francia.

El confinamiento magnético consiste en contener el material a fusionar en un campo magnético mientras se le hace alcanzar la temperatura y presión necesarias. El hidrógeno a estas temperaturas alcanza el estado de plasma.

Los primeros modelos magnéticos, americanos, conocidos como Stellarator generaban el campo directamente en un reactor toroidal, con el problema de que el plasma se filtraba entre las líneas del campo.

Los ingenieros rusos mejoraron este modelo dando paso al Tokamak en el que un arrollamiento de bobina primario inducía el campo sobre el plasma, aprovechando que es conductor, y utilizándolo de hecho como un arrollamiento secundario. Además la resistencia eléctrica del plasma lo calentaba.

Sin embargo el mayor reactor de este tipo, el JET (toro europeo conjunto) no ha logrado mantener una mezcla a la temperatura (1 millón de grados) y presión necesarias para que se mantuviera la reacción.

Se ha comprometido la creación de un reactor aun mayor, el ITER uniendo el esfuerzo internacional para lograr la fusión. Aun en el caso de lograrlo seguiría siendo un reactor experimental y habría que construir otro prototipo para probar la generación de energía, el llamado proyecto DEMO.

Un reactor nuclear no es una planta de generación de energía, a pesar de que en el imaginario popular es su único uso. Hay muchos tipos de reactores nucleares con diferentes fines, ya que la energía nuclear es útil y en casos imprescindible en muchos campos como la medicina, la industria, la agricultura o la alimentación.

Un reactor nuclear es, a grandes rasgos, un contenedor dentro del cual se producen reacciones nucleares controladas, con el fin de que estas reacciones produzcan algo que es lo que queremos utilizar.

Reacciones nuclearesLas reacciones nucleares son transformaciones en el núcleo de los átomos. Son análogas, aunque muy diferentes, a las reacciones químicas, y liberan muchísima más energía.La fisión nuclear se da cuando el núcleo del átomo se divide en dos. La fusión nuclear en cambio, sucede cuando dos núcleos se unen. En este proceso, por el desequilibrio que se produce, se emiten grandes cantidades de energía.Reactores nucleares de potenciaEste tipo de reactores son los que se usan para generar energía, aunque también se pueden utilizar para otros fines. En ellos el algo que se busca obtener es el calor que se produce a partir de la fisión nuclear.Ese calor generado, hace hervir agua generando vapor que mueve turbinas las centrales conectadas a generadores eléctricos, que son, en realidad, quienes
Hoy habia 2 visitantes (3 clics a subpáginas) ¡Aqui en esta página!
Este sitio web fue creado de forma gratuita con PaginaWebGratis.es. ¿Quieres también tu sitio web propio?
Registrarse gratis